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1. Zonotopes

Polytopes
A (non-degenerate) polytope P is either given by its Vs i
vertices ' '
P = conv(vi, ..., V), -
Vy B
V3
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1. Zonotopes

Definition

Definition: Zonotopes

A zonotope Z = (C, G) is a set of the form

z:{g3+6

Fel-11m},

where ¢ € R" is the center and G € R"*"™ is the matrix of generators.
It is non-degenerate if rank(G) = n, and a parallelotope if m = n.
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1. Zonotopes

Example: Robust Control

Question: How to check if pe Z7?
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2. The Point Containment Problem

Solving the Point Containment Problem

B e [—1,1]"’}
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2. The Point Containment Problem

Solving the Point Containment Problem

{Gﬁ+c’ﬂe[ 1,1]" }
+¢ st fel-1,1m
+¢ st [fle <1
& min||f]lec <1, subjecttop= §5+ c.

3
||l
(o)

(6, 6)z=5-¢
. =T] = -
& min [1 Om} Z, st. <_1m Lo ) 5 e

_Tm _imxm

S
3

However, solving this gives much more information than containment: It
measures, how far away the point is from Z.
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2. The Point Containment Problem

Zonotope Norms

The function

18]z = min || B]|c subject to G5 =

=

is a norm on R", if Z = (¢, G) is non-degenerate.

The unit ball of || - ||z coincides with Z:
z=817(&) = (e R"||x~ &z < 1},
and similarly for the boundary 97 of Z:

0z = 0B17(&) = {x e R"||x - €|z = 1}.
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3. Duality and Radii

Dual Polytopes

The dual polytope P2 of a polytope P that contains the origin is the
polytope one gets by replacing facets by vertices, and vertices by facets,

i.e., if
He <1},

PA = conv(HT).

P:{YGR”

then
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3. Duality and Radii

Circumradius Ry(P): Minimal Inradius rg(P): Maximal radius of a
radius of a ball w.r.t. the g-norm, ball w.r.t. the g-norm, that is
that contains P. contained in P.
P
oo (P)

Duality: For the 2-norm: Rx(P) = ﬁ.
Similarly, for the 1-norm: Ry(P) = —A (1PA)'
Recall:

Xl = Pal 4w 4 Ixal, [[X]loo = max x].
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4. The Zonotope Containment Problem

Formulation of the Problem

How to check whether a zonotope Z; = (¢, G;) is inside a zonotope
ZZ = <627g2>?

L1 C L
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41 C 4
< For every point p € Z;, there holds p' € 2,
& For every point pe 7y, ||p— &z, <1
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max 5~ & |z, <
N———
=:d(Z1,22)

. . 1 .
In particular, r := Az 'S the largest scalar, s.t. r- 23 C 2.

If Z; is the unit hypercube centered around ¢ = &, then r = roo(22).
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4. The Zonotope Containment Problem

Proving the co-NP-completeness

Theorem (Bodlaender, Gritzmann,
Klee, Van Leeuwen)

For parallelotopes I, computing
R1(M) is NP-hard.

Steps for the reduction:

@ Input: Parallelotope 1.
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4. The Zonotope Containment Problem

Proving the co-NP-completeness

Theorem (Bodlaender, Gritzmann,
Klee, Van Leeuwen) e3

For parallelotopes I, computing
R1(M) is NP-hard.

Steps for the reduction:
@ Input: Parallelotope 1.

@ Compute M. Since M has 2n
facets, M2 has 2n vertices.

@ Embed M2 in R™1. w2
@ Join the vertices of M2 to the
origin.

® Construct a zonotope Z* that
encloses the vertices of M2,

Kulmburg, Althoff co-NP-completeness of the Zonotope Containment Problem ECC'21, July 02, 2021 10 / 16



4. The Zonotope Containment Problem

Equivalent Radii

One can prove that
roo(Z%) = croo(N?),

= Computing r(Z*) is as

hard as computing ro.(M4),

which by duality is as hardas ™= e
computing Ry([M), which is
NP-hard.

Corollary
For any k > 0, the problem of checking whether

d(Z1,22) < k

for zonotopes Zi, Z> is co-NP-complete.

v
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5. Algorithms

Possible Algorithms for the Zonotope Containment TI_ITI

Problem

Zonotopes /1, Z» in R", with my, my generators, respectively.
o Vertex enumeration of Z;: Polynomial, if my is fixed — ZC
o Maximal distance to facets: Polynomial, if n or my are fixed — ZC%,
zc™2
o Sadraddini-Tedrake!: Polynomial, but not exact — ST

o Computing d(Zi1, Z2) using optimization: Here, with fmincon, which
can be used to efficiently disprove containment — zc0

1y

!S. Sadraddini and R. Tedrake, " Linear encodings for polytope containment
problems,” in IEEE 58th Conference on Decision and Control, 2019, pp. 4367-4372
co-NP-completeness of the Zonotope Containment Problem ECC'21, July 02,2021 12/ 16



5. Algorithms

Results - Vertex Enumeration

Worst-case runtime of ZCU, ZC™  and ST for n = 5, m; = 10.
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5. Algorithms

Results - Maximal distance to facets

V\gorst—case runtime of ZCU, ZC™, and ST for my = 17,m; = 10. Worst-case runtime of ZCU, ZC®, and ST for n = 5,m; = 10.
- o
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Runtime, in [s
° o w
Runtime, in [s
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o
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. n
5Mean runtime of ZCD’ 2C™, and ST for my = 17,m; = 10. Mean runtime of ZCD, ZC®, and ST for n = 5,m; = 10.
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5. Algorithms

Results - High Dimensions

Worst-case runtime of ZcU and ST for mp = my = 2n.

200
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Mean runtime of ZcU and ST for my = my = 2n.
200
% zc0
150 3 st

Runtime, in [s]
g 8

Kulmburg, Althoff co-NP-completeness of the Zonotope Containment Problem ECC'21, July 02, 2021 15 / 16



Conclusions

Contributions and Open Questions

Contributions:
o Introduction of a new norm induced by any (non-degenerate)
zonotope
o Proof of the co-NP-completeness of the zonotope containment
problem
o New algorithms that solve the containment problem efficiently in
various scenarios
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o New algorithms that solve the containment problem efficiently in
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Open questions:
o Is the zonotope containment problem actually co-APX-complete?

o What solver would be best suited for the optimization problem?
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