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1. Zonotopes

Polytopes

A (non-degenerate) polytope P is either given by its
vertices

P = conv(~v1, ..., ~vN),

~v1

~v2

~v3

~v4

~v5

or by its facets, through the halfspace representation

P =
{
~x ∈ Rn

∣∣∣H~x ≤ ~1} .
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1. Zonotopes

Definition

Definition: Zonotopes

A zonotope Z = 〈~c ,G 〉 is a set of the form

Z =
{
G ~β + ~c

∣∣∣ ~β ∈ [−1, 1]m
}
,

where ~c ∈ Rn is the center and G ∈ Rn×m is the matrix of generators.
It is non-degenerate if rank(G ) = n, and a parallelotope if m = n.
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1. Zonotopes

Example: Robust Control

Z

~p0

~p

Question: How to check if ~p ∈ Z?
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2. The Point Containment Problem

Solving the Point Containment Problem

~p ∈ Z =
{
G ~β + ~c

∣∣∣~β ∈ [−1, 1]m
}

⇔ ~p = G ~β + ~c , s.t. ~β ∈ [−1, 1]m.

⇔ ~p = G ~β + ~c , s.t. ‖~β‖∞ ≤ 1.

⇔ min
~β
‖~β‖∞ ≤ 1, subject to ~p = G ~β + ~c .

⇔ min
~z

[
1 ~0Tm

]
~z , s.t.


(
~0n G

)
~z = ~p − ~c,(

−~1m Im×m
−~1m −Im×m

)
~z ≤ ~02m.

However, solving this gives much more information than containment: It
measures, how far away the point is from Z .
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2. The Point Containment Problem

Zonotope Norms

The function

‖~p‖Z = min
~β
‖~β‖∞ subject to G ~β = ~p

is a norm on Rn, if Z = 〈~c ,G 〉 is non-degenerate.

The unit ball of ‖ · ‖Z coincides with Z :

Z = B
‖·‖Z
1 (~c) := {~x ∈ Rn|‖~x − ~c‖Z ≤ 1} ,

and similarly for the boundary ∂Z of Z :

∂Z = ∂B
‖·‖Z
1 (~c) = {~x ∈ Rn|‖~x − ~c‖Z = 1} .
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3. Duality and Radii

Dual Polytopes

The dual polytope P∆ of a polytope P that contains the origin is the
polytope one gets by replacing facets by vertices, and vertices by facets,
i.e., if

P =
{
~x ∈ Rn

∣∣∣H~x ≤ ~1} ,
then

P∆ = conv(HT ).
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3. Duality and Radii

Radii

Circumradius Rq(P): Minimal
radius of a ball w.r.t. the q-norm,
that contains P.

P
R2(P)

Inradius rq(P): Maximal radius of a
ball w.r.t. the q-norm, that is
contained in P.

P

r∞(P)

Duality: For the 2-norm: R2(P) = 1
r2(P∆)

.

Similarly, for the 1-norm: R1(P) = 1
r∞(P∆)

.

Recall:
‖~x‖1 = |x1|+ ...+ |xn|, ‖~x‖∞ = max

i
|xi |.
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4. The Zonotope Containment Problem

Formulation of the Problem

How to check whether a zonotope Z1 = 〈~c1,G 1〉 is inside a zonotope
Z2 = 〈~c2,G 2〉?

Z1 ⊆ Z2

⇔ For every point ~p ∈ Z1, there holds ~p ∈ Z2

⇔ For every point ~p ∈ Z1, ‖~p − ~c2‖Z2 ≤ 1

⇔ max
~p∈Z1

‖~p − ~c2‖Z2︸ ︷︷ ︸
=:d(Z1,Z2)

≤ 1

In particular, r := 1
d(Z1,Z2) is the largest scalar, s.t. r · Z1 ⊆ Z2.

If Z1 is the unit hypercube centered around ~c1 = ~c2, then r = r∞(Z2).
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4. The Zonotope Containment Problem

Proving the co-NP-completeness

Theorem (Bodlaender, Gritzmann,
Klee, Van Leeuwen)

For parallelotopes Π, computing
R1(Π) is NP-hard.

Steps for the reduction:

1 Input: Parallelotope Π.

2 Compute Π∆. Since Π has 2n
facets, Π∆ has 2n vertices.

3 Embed Π∆ in Rn+1.

4 Join the vertices of Π∆ to the
origin.

5 Construct a zonotope Z ∗ that
encloses the vertices of Π∆.

R2

~e3

α

Π∆
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4. The Zonotope Containment Problem

Equivalent Radii

One can prove that

r∞(Z ∗) = cr∞(Π∆),

⇒ Computing r∞(Z ∗) is as
hard as computing r∞(Π∆),
which by duality is as hard as
computing R1(Π), which is
NP-hard.

~e3

R2

~0

Z ∗
Π∆

~c

Corollary

For any k > 0, the problem of checking whether

d(Z1,Z2) ≤ k

for zonotopes Z1,Z2 is co-NP-complete.
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5. Algorithms

Possible Algorithms for the Zonotope Containment
Problem

Zonotopes Z1,Z2 in Rn, with m1,m2 generators, respectively.

Vertex enumeration of Z1: Polynomial, if m1 is fixed → ZC
m1

Maximal distance to facets: Polynomial, if n or m2 are fixed → ZCn,
ZC

m2

Sadraddini-Tedrake1: Polynomial, but not exact → ST

Computing d(Z1,Z2) using optimization: Here, with fmincon, which
can be used to efficiently disprove containment → ZCO

1S. Sadraddini and R. Tedrake, ”Linear encodings for polytope containment
problems,” in IEEE 58th Conference on Decision and Control, 2019, pp. 4367-4372
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5. Algorithms

Results - Vertex Enumeration
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5. Algorithms

Results - Maximal distance to facets
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5. Algorithms

Results - High Dimensions
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Conclusions

Contributions and Open Questions

Contributions:

Introduction of a new norm induced by any (non-degenerate)
zonotope

Proof of the co-NP-completeness of the zonotope containment
problem

New algorithms that solve the containment problem efficiently in
various scenarios

Open questions:

Is the zonotope containment problem actually co-APX-complete?

What solver would be best suited for the optimization problem?
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